Asymmetric Alkylation of \boldsymbol{B}-Ketoesters: Synthesis and Michael Additions of a Chiral Sultam-Derived Acetoacetyl Equivalent

Nazario Martín,** Angeles Martínez-Grau, ${ }^{\text {a }}$ Carlos Seoane,** and José L. Marco* ${ }^{\text {b }}$
${ }^{\text {a }}$ Departamento de Qufmica Oryárica, Facultad de Qufmica, Universidad Complutense, 28040-Madrid, Spain. ${ }^{\text {b }}$ Instituto de Química Orgénica (CSIC), Juan de la Cierva 3, 28006-Madrid, Spain.

Abstract: The symshesis and Michael reaction of the chiral acesoacetyl equivalent 1 with arylidenemalomonitriles 3 is reporred.

The asymmetric alkylation of B-ketoesters is a yet unsolved problem of great interest in organic synthesis; only recently several methodological developments have been reported. ${ }^{1}$ In our current approach to this subject we have designed the new and chiral sultam-derived acetoacetyl equivalent 1 (Scheme 1), where chirality has been located at the carboxylic part of the B-ketoester moiety using the well known Oppolzer's sultam 2. ${ }^{2}$ In this letter we report the synthesis and asymmetric Michael reaction ${ }^{3,4}$ of compound 1 with arylidenemalononitriles 3 , eventually leading, after 1,4 -addition and O-ring closure, to enantiomerically pure $4 H$-pyrans ${ }^{5,6}$ (I) (Scheme 1).

Scheme 1

The chiral reagent 1^{7} has been synthesized from 2,2,6-trimethyl-4H-1,3-dioxin-4-one 4 and 10,2bornanesultam 2^{2} in 86% yield following the standard protocol (Scheme 2). Initial exploratory experiments directed to find the best conditions for the reaction of 1 and $3\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}\right)^{9}$ gave unsuccessful results using titanium tetrachloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} \rightarrow \text { r.t. }\right)^{10}$, boron trifluoride etherate $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} \rightarrow\right.$ r.t.), dimethyl-t-butylsilyl triflate $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NEt}_{3} ; \mathrm{TiCl}_{4}\right)^{11}$ or LDA $\left(-78^{\circ} \mathrm{C} \rightarrow\right.$ r.t. $)$ as promotors or catalysts; using sodium hydroxide under PTC conditions ${ }^{12}$, in addition to recovered starting materials, sultam 2, benzaldehyde and N -(E-cinnamoyl)-10,2-bornanesultam $5^{13}\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$ were detected. This compound, as the E isomer only, was obtained in 74% yield when sodium hydride (THF; $0^{\circ} \mathrm{C} \rightarrow$ r.t.) was used as base. No $4 H$-pyran was observed. Finally, using piperidine as catalyst in toluene, ${ }^{5,14}$ compound 1 reacted with $\mathbf{3}$ giving, after

Michael addition and O-ring closure, the expected $4 H$-pyrans 6^{7}, in yields and diastereomeric excesses as shown in Table, and traces of the corresponding N -(E-3-arylpropenoyl)-10,2-bornanesultams (5). From the results in Table we conclude that we have obtained consistent and good values for the d.e.,s ($\approx 60 \%$) in the asymmetric addition of our N -acetoacetyl sultam 1 to the Michael acceptors $\mathbf{3}$. These data are also independent of the nature and position of the substituent attached to the phenyl ring in 3. In the ${ }^{1} \mathrm{H}$ NMR spectra of these diastereomeric mixtures, major and minor isomers 6 showed clearly resolved signals for $\mathrm{H}-4$ at 4.7-4.6 ppm and 4.3-4.2 ppm, respectively. Unfortunately, we were unable to separate these isomers by flash chromatography; ${ }^{15}$ only in cases $\mathbf{6 a}$ and $\mathbf{6 f}$ (see Table) we could obtain pure major and minor isomers by recrystallization. After careful analysis of the 'H NMR spectra (see above) of diastereomers 6, it is clear that in all these cases the major isomer has the same absolute configuration at the new stereocenter (C-4). This stereochemistry has been established as R by X -ray diffraction analysis of minor $\mathbf{6 a}-(S) .^{16}$

a: toluene, $150^{\circ} \mathrm{C}, 82 \%$; b: 3 , piperidine, toluene, r.t.; c: LiAlH_{4}, ether, reflux.
Scheme 2

Table. New $4 H$-pyrans 6 and 7 prepared.

	Ar	6		7
		Yield ${ }^{1}$ (\%)	d.e. ${ }^{2}$ (d.e.) ${ }^{3}$	Yield ${ }^{1}$ (\%)
a	$\mathrm{C}_{6} \mathrm{H}_{5}$	65	60 (>99)	73
b	$o-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$	62	60	72
c	$p-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$	42	70	59
d	$m-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$	85	70	40
e	$p-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}$	91	60	41
f	$p-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	64	70 (>99)	42

${ }^{2}$ After chromatography. ${ }^{2}$ Determined by ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})$ on the crude reaction mixtures. ${ }^{3}$ After recrystalization.

Finally, after extensive search for optimal conditions ${ }^{17}$, pure major isomers 6a, $6 \mathbf{f}$ and the diastereomeric mixtures 6b-e were treated with lithium aluminium hydride ${ }^{14}$, providing sultam 2 ($75-95 \%$ yield) and the enantiomerically pure alcohols $7 \mathbf{a}^{\mathbf{7}}, \mathbf{7 f}^{\mathbf{7}}$ or the enantiomerically enriched alcohols $\mathbf{7 b - e}$ in reasonable yield (see Table).

Scheme 3

The formation of major $6(R)$ isomers coupled to the exclusive formation of $E-5$ isomers (traces) during the Michael addition can be explained as shown in Scheme 3. We can assume that the α-unsubstituted acylsultam reacts in a conformation where the carbonyl is anti to the SO_{2} group ${ }^{2.18}$ (also confirmed by X-Ray analysis of compound $\mathbf{1}^{16}$) and s-cis to the $\mathrm{C} \alpha, \mathrm{CB}$ bond due to a presumed internal quelate between the piperidinium cation and the 1,3 -dicarbonyl group. The face differentiation is then dictated by the Michael addition to the arylidenemalononitrile from the less hindered bottom face to generate intermediate 8, that smouthly gives 5 (traces) and 6. This particular behaviour has also been observed during the 1,4-hydride addition to enoylsultams. ${ }^{19}$ As shown, the exclusive formation of $E-5$ is based on an irreversible intramolecular addition-elimination process. Note that, not surprisingly, in the presence of a stronger base, as sodium hydride (see above), formation of $E-5\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$ is preferred to the O -ring closure.

The results reported here add to the large panoply of asymmetric syntheses with camphor sultam derivatives and give a clear picture of the power of this chiral auxiliary in order to induce good selectivity in Michael additions. Compound 1 is thus an efficient acetoacetyl chiral equivalent of potential interest in asymmetric synthesis. In addition, with these results, we have improved, in yields and diastereoselectivity, our former experiments ${ }^{6}$ in the asymmetric synthesis of multiply functionalized $4 H$-pyrans. Work is now in progress in order to exploit and expand the synthetic usefulness of intermediate 1 and will be reported in due course.

Acknowledgments.Financial support by the Comision Interministerial de Ciencia y Tecnologia of Spain (CICYT, Grants: PB 89-0495 and PB 90-0078) is gratefully acknowledged.

REFERENCES AND NOTES

1. Ando, K.; Takemasa, Y.; Tomioka, K.; Koga, K. Terrahedron 1993, 49, 1579, and reference 4 cited therein.
2. Reviews: (a) Oppolzer, W. Pure Appl. Chem. 1990, 62, 1241. (b) Oppolzer, W. Tetrahedron 1987, 43, 1969.
3. Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Tetrahedron Organic Chemistry Series No 9, Pergamon Press: Oxford, 1992. For review see: Lee, V.J. In Comprehensive Organic Synthesis; Trost, B.M.; Fleming, I., Pergamon Press: Oxford, 1991; Vol 4, Chapter 1.2.
4. For previous reviews on stereoselective conjugate additions see: (a) Rossiter, B.E.; Swingle, N.M. Chem. Rev. 1992, 92, 771. (b) Schmalz, H.G. In Comprehensive Organic Synthesis; Trost, B.M.; Fleming, 1., Pergamon Press: Oxford, 1991; Vol 4, Chapter 1.5. (c) Tomioka, K.; Koga, K. In Asymmetric Synthesis; Morrison J.D., Academic Press, New York, 1983; Vol 2, p 201.
5. Soto, J.L.; Seoane, C.; Martín, N.; Quinteiro, M. Heterocycles 1984, 22, 1.
6. This is also a complementary approach to our recently described asymmetric Michael addition of malononitrile to chiral α-acylacrylates: Gonzalez, R.; Martín, N.; Seoane, C.; Marco, J.L.; Albert, A.; Cano, F.H. Tetrahedron Lett. 1992, 33, 3809.
7. All new compounds have shown good analytical and spectroscopic data: 1: m.p. $78-81^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}-77.5^{\circ}(c 1.06$, CHCl_{3}); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.00\left(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.87(\mathrm{dd}, 1 \mathrm{H}, J=7.8$ and 4.8 Hz , CHN), $3.66\left(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.49\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 3.42(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.8 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{SO}_{2}$), $2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.30-1.85(5 \mathrm{H}), 1.45-1.32(2 \mathrm{H}), 1.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 6 \mathrm{a}$ (major isomer): m.p. $185-187^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}-165.6^{\circ}\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.33-7.18(5 \mathrm{H}$, aromatic), 4.64 (d, $1 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{H}-4$), $4.50\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$), 3.82 (dd, $1 \mathrm{H}, J=7.8$ and $4.8 \mathrm{~Hz}, \mathrm{CHN}$), 3.48 (d, $1 \mathrm{H}, J=13.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}$), $3.38\left(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right.$), $1.99\left(\mathrm{~d}, 3 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $1.93-1.72$ (4H), 1.42-1.22 (3H), $1.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 166.45$ (CO), 157.45 (C2), 149.75 (C6), 141.13, 128.49, 127.95, 127.54 (aromatic), 118.91 (CN), 110.35 (C5), 64.29 (CHN), $61.31(\mathrm{C} 3), 52.87\left(\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 48.14,47.60(2 \mathrm{C}), 44.11(\mathrm{CH}), 40.34(\mathrm{C} 4), 37.35,32.45,26.39\left(3 \mathrm{CH}_{2}\right), 20.44$, 19.68, $17.25\left(3 \mathrm{CH}_{3}\right)$; $7 \mathrm{a}:$ m.p. $95-98^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}+25^{\circ}\left(c 1.3, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$) $\delta: 7.35-7.20\left(5 \mathrm{H}\right.$, aromatic), $5.86\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.21(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{H}-4), 4.11(\mathrm{~d}, 1 \mathrm{H}, J=12.3 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{OH}$), $3.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right.$), 1.97 (d, $3 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 160.51 (C2), 144.23 (C6), $145.30,129.26,128.77,127.67$ (aromatic), 120.46 (CN), 113.36 (C5), 59.63 (C3), $59.03\left(\mathrm{CH}_{2} \mathrm{OH}\right), 40.53(\mathrm{C} 4), 15.44\left(\mathrm{CH}_{3}\right) ; 7$ f: m.p. $111-113^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}+37.6^{\circ}\left(\mathrm{c} 1.23, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.30$ (td, 2 H , aromatic), 7.18 (td, 2 H , aromatic), 4.56 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 4.18 (d, $1 \mathrm{H}, J=0.9$ $\mathrm{Hz}, \mathrm{H}-4), 4.07\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.74\left(\mathrm{~d}, \mathrm{IH}, \mathrm{J}=12.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 1.98\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=0.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 158.71$ (C2), 144.61 (C6), $141.58,133.14,129.22,128.90$ (aromatic), 119.44 (CN), $111.28(\mathrm{C} 5), 60.46(\mathrm{C} 3), 59.71\left(\mathrm{CH}_{2} \mathrm{OH}\right), 39.34(\mathrm{C} 4), 15.34\left(\mathrm{CH}_{3}\right)$.
8. Clemens, R.J.; Hyatt, J.A. J. Org. Chem. 1985, 50, 2431.
9. (a) For the Michael addition of chiral malonate derivatives to α, β-unsaturated carbonyl compounds see: Mukaiyama, T.; Hirako, Y.; Takeda, T. Chem. Lett., 1978, 461. (b) For the α-alkylation of a chiral cyanoacetate ester see also: Cativiela, C.; Dfaz de Villegas, M.D.; Gálvez, J.A. Tetrahedron: Asymmetry 1992, 3, 1141. (c) For the intramolecular Michael reaction of a chiral B-ketoester, see: Stork, G.; Saccomano, N.A. Nouv. J. Chim. 1986, 10, 677.
10. Oppolzer, W.; Rodriguez, I.; Blagg, J.; Bernardinelli, G. Helv. Chim. Acta 1989, 72, 123.
11. Oppolzer, W.; Starkeman, C.; Rodriguez, I.; Bernardinelli, G. Tetrahedron Lett. 1991, 32, 61.
12. Oppolzer, W.; Moretti, R.; Thomi, S. Tetrahedron Lett. 1989, $30,1009$.
13. Kocienski, P.; Thomi, C. Synthesis 1992, 582.
14. General procedure for the synthesis of 6 and 7: Compound 1 (1.0 equiv) was dissolved in dry toluene, and piperidine (four drops) plus the appropriate arylidenemalononitrile 3 (1.5 equiv) were added. The solution was stirred at r.t. for $24-48 \mathrm{~h}$. The solvent was removed and the residue submitted to FC giving compound 6. A solution of 6 (1.0 equiv) in THF/ether ($1: 5,18 \mathrm{~mL} / 0.5 \mathrm{mmol}$) was added to a stirred suspension of $\mathrm{LiAlH}_{4}(2.5$ equiv) in dry ether ($4 \mathrm{~mL} / \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. Stirring $\left(0^{\circ} \mathrm{C}, 3 \mathrm{~h}\right)$, addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, extraction with ether, drying, concentration and FC gave the recovered sultam $2(75-95 \%$ yield) and the alcohol 7.
15. Still, W.C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
16. Personal communication (F.H. Cano, U.E.I. Cristalograffa, Instituto de Química Física "Rocasolano" (CSIC), Serrano 116, 28006-Madrid, Spain).
17. Oppolzer, W.; Lienard, P. Helv. Chim. Acta 1992, 75, 2572.
18. Curran, D.P.; Kim, B.H. Tetrahedron 1993, 49, 293.
19. Oppolzer, W.; Poli, G.; Starkemann, C.; Bernardinelli, G. Tetrahedron Lett. 1988, 29, 3559.
